Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Trace Elem Med Biol ; 78: 127160, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2270959

ABSTRACT

BACKGROUND: In recent months, the current COVID-19 pandemic has generated thousands of studies directly or indirectly related with this disease and/or the coronavirus SARS-CoV-2 causing the infection. On August 22, 2022, the database PUBMED included 287,639 publications containing the term COVID-19. However, in spite of the importance of trace elements in human health, including the immune system, data on the levels of metals/metalloids in COVID-19 patients is very limited. METHODS: The concentrations of As, Cd, Cr, Cu, Hg, Fe, Mg, Mn, Pb, Se, V and Zn were determined by inductively coupled plasma-mass spectrometry (ICP-MS) in 126 serum samples of individuals infected with SARS-CoV-2, as well as in 88 samples of non-infected individuals. Participants were divided into four groups: i) individuals COVID-19 positive (COVID-19 +) with an asymptomatic infection course; ii) individuals suffering mild COVID-19; iii) individuals suffering severe COVID-19, and iv) individuals COVID-19 negative (COVID-19-) (control group). The occurrence of the analyzed metals/metalloids was evaluated along with the biochemical profile, including blood cell counts, lipids, proteins and crucial enzymes. RESULTS: Serum levels of Mg, V, Cr, Cu, Cd, and Pb were higher in COVID-19 positive patients than those in the control group. Although no significant differences were observed between the different groups of patients, the concentrations of Cd, Pb, V and Zn showed a tendency to be higher in individuals with severe COVID-19 than in those showing mild symptoms or being asymptomatic. Arsenic and Hg were rarely detected, regardless if the subjects were infected by SARS-CoV-2, or not. The current results did not show significant differences in the levels of the rest of analyzed elements according to the severity of the disease (asymptomatic, mild and severe). CONCLUSIONS: In spite of the results here obtained, we highlight the need to reduce the exposure to Cd, Pb and V to minimize the potential adverse health outcomes after COVID-19 infection. On the other hand, although a protective role of essential elements was not found, Mg and Cu concentrations were higher in severe COVID-19 patients than in non-infected individuals.


Subject(s)
COVID-19 , Mercury , Metalloids , Trace Elements , Humans , Cadmium , Lead , Pandemics , SARS-CoV-2 , Trace Elements/analysis
2.
Front Immunol ; 13: 1022673, 2022.
Article in English | MEDLINE | ID: covidwho-2163017

ABSTRACT

Introduction: Certain trace elements are essential for life and affect immune system function, and their intake varies by region and population. Alterations in serum Se, Zn and Cu have been associated with COVID-19 mortality risk. We tested the hypothesis that a disease-specific decline occurs and correlates with mortality risk in different countries in Europe. Methods: Serum samples from 551 COVID-19 patients (including 87 non-survivors) who had participated in observational studies in Europe (Belgium, France, Germany, Ireland, Italy, and Poland) were analyzed for trace elements by total reflection X-ray fluorescence. A subset (n=2069) of the European EPIC study served as reference. Analyses were performed blinded to clinical data in one analytical laboratory. Results: Median levels of Se and Zn were lower than in EPIC, except for Zn in Italy. Non-survivors consistently had lower Se and Zn concentrations than survivors and displayed an elevated Cu/Zn ratio. Restricted cubic spline regression models revealed an inverse nonlinear association between Se or Zn and death, and a positive association between Cu/Zn ratio and death. With respect to patient age and sex, Se showed the highest predictive value for death (AUC=0.816), compared with Zn (0.782) or Cu (0.769). Discussion: The data support the potential relevance of a decrease in serum Se and Zn for survival in COVID-19 across Europe. The observational study design cannot account for residual confounding and reverse causation, but supports the need for intervention trials in COVID-19 patients with severe Se and Zn deficiency to test the potential benefit of correcting their deficits for survival and convalescence.


Subject(s)
COVID-19 , Selenium , Trace Elements , Humans , Zinc , Copper , Trace Elements/analysis
3.
Environ Sci Pollut Res Int ; 29(28): 41875-41885, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1872653

ABSTRACT

Covid-19 lockdowns have improved the ambient air quality across the world via reduced air pollutant levels. This article aims to investigate the effect of the partial lockdown on the main ambient air pollutants and their elemental concentrations bound to PM2.5 in Hanoi. In addition to the PM2.5 samples collected at three urban sites in Hanoi, the daily PM2.5, NO2, O3, and SO2 levels were collected from the automatic ambient air quality monitoring station at Nguyen Van Cu street to analyze the pollution level before (March 10th-March 31st) and during the partial lockdown (April 1st-April 22nd) with "current" data obtained in 2020 and "historical" data obtained in 2014, 2016, and 2017. The results showed that NO2, PM2.5, O3, and SO2 concentrations obtained from the automatic ambient air quality monitoring station were reduced by 75.8, 55.9, 21.4, and 60.7%, respectively, compared with historical data. Besides, the concentration of PM2.5 at sampling sites declined by 41.8% during the partial lockdown. Furthermore, there was a drastic negative relationship between the boundary layer height (BLH) and the daily mean PM2.5 in Hanoi. The concentrations of Cd, Se, As, Sr, Ba, Cu, Mn, Pb, K, Zn, Ca, Al, and Mg during the partial lockdown were lower than those before the partial lockdown. The results of enrichment factor (EF) values and principal component analysis (PCA) concluded that trace elements in PM2.5 before the partial lockdown were more affected by industrial activities than those during the partial lockdown.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Trace Elements , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis , SARS-CoV-2 , Trace Elements/analysis , Vietnam
4.
Environ Geochem Health ; 44(12): 4423-4436, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1661706

ABSTRACT

Severe outcome particularly death is the largest burden of COVID-19. Clinical observations showed preliminary data that deficiency in certain trace elements, essential for the normal activity of immune system, may be associated with worse COVID-19 outcome. Relevant study of environmental epidemiology has yet to be explored. We investigated the geographical association between concentrations of Se, Zn, Fe and Cu in surface soils and case fatality rate of COVID-19 in USA. Two sets of database, including epidemiological data of COVID-19 (including case fatality rate, from the University of John Hopkinson) and geochemical concentration data of Se, Zn, Fe and Cu in surface soils (from the National Geochemical Survey), were mapped according to geographical location at the county level across conterminous USA. Characteristics of population, socio-demographics and residential environment by county were also collected. Seven cross-sectional sampling dates, with a 4-week interval between adjacent dates, constructed an observational investigation over 24 weeks from October 8, 2020, to March 25, 2021. Multivariable fractional (logit) outcome regression analyses were used to assess the association with adjustment for potential confounding factors. In USA counties with the lowest concentration of Zn, the case fatality rate of COVID-19 was the highest, after adjustment for other influencing factors. Associations of Se, Fe and Cu with case fatality rate of COVID-19 were either inconsistent over time or disappeared after adjustment for Zn. Our large study provides epidemiological evidence suggesting an association of Zn with COVID-19 severity, suggesting Zn deficiency should be avoided.


Subject(s)
COVID-19 , Selenium , Trace Elements , Humans , Zinc/analysis , Copper/analysis , Trace Elements/analysis , Selenium/analysis , Iron/analysis , Cross-Sectional Studies , Soil
5.
Environ Res ; 206: 112624, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1587833

ABSTRACT

China's unprecedented lockdown to contain the spread of the novel coronavirus disease (COVID-19) in early 2020, provided a tragic natural experiment to investigate the responses of atmospheric pollution to emission reduction at regional scale. Primarily driven by primary emissions, particulate trace elements is vitally important due to their disproportionally adverse impacts on human health and ecosystem. Here 14 trace elements in PM2.5 were selected for continuous measurement hourly in urban representative site of Shanghai, for three different phases: pre-control period (1-23 January 2020), control period (24 January-10 February 2020; overlapped with Chinese Lunar New Year holiday) and post control period (11-26 February 2020) the city's lockdown measures. The results show that all meteorological parameters (including temperature, RH, mixing layer height et al.) were generally consistent among different periods. Throughout the study period, the concentrations of most species displayed a "V-shaped" trend, suggesting significant effects by the restriction measures imposed during the lockdown period. While this is not the case for species like K, Cu and Ba, indicating their unusual origins. As a case study, the geographical origins of Cu were explored. Seven major sources, i.e., Vehicle-related emission (including road dust; indicative of Ca, Fe, Ba, Mn, Zn, Cu; accounting for 30.1%), shipping (Ni; 5.0%), coal combustion (As, Pb; 4.2%), Se and Cr industry (24.9%), nonferrous metal smelting (Au, Hg; 7.5%) and fireworks burning (K, Cu, Ba; 28.3%) were successfully pinpointed based on positive matrix factorization (PMF) analysis. Our source apportionment results also highlight fireworks burning was one of the dominant source of trace elements during the Chinese Lunar New Year holiday. It is worth noting that 56% of the total mass vehicular emissions are affiliated with non-exhaust sources (tire wear, brake wear, and road surface abrasion).


Subject(s)
Air Pollutants , COVID-19 , Trace Elements , Air Pollutants/analysis , China , Communicable Disease Control , Dust/analysis , Ecosystem , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2 , Trace Elements/analysis , Vehicle Emissions/analysis
6.
Biol Trace Elem Res ; 200(10): 4230-4237, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1540276

ABSTRACT

BACKGROUND: Despite the exact etiopathogenesis of psoriasis remains unknown, the increasing or decreasing of some trace elements and oxidative stress status are considered to play a role. In this study, the effect of Lactocare® synbiotic on the serum levels of trace elements including Zn, Cu, Mg, Na, Fe, P, Ca, and K in the patients with mild to moderate psoriasis was investigated. METHODS: Sixty-four patients with mild to moderate psoriasis were included. Patients were randomly divided into treatment (n═32) and control (n═32) groups. The treatment group received Lactocare® and the control group received a placebo (two times daily for 12 weeks). Eight patients from the intervention group and 18 patients from the control group discontinued the study because of the recent COVID-19 condition. For routine trace element analysis, the blood samples were collected from all patients at the baseline as well as week 12 post-treatment. The serum was then isolated and the serum levels of trace elements including Fe, K, Ca, Mg, P, Zn, Na, and Cu were measured using an automatic electrolyte analyzer. For confirmation of the effect of Lactocare® on the alteration of serum levels of trace elements, intra-group analysis was performed at two interval times: baseline and week 12 post-treatment. RESULTS: The serum levels of K, P, and Ca in the placebo group were significantly higher than that of the treatment group at baseline. Serum levels of Zn and Ca were significantly higher in the treatment group compared to the placebo group at week 12 post-treatment. Moreover, a significantly lower serum level of K, P, and Ca in the treatment group at the baseline compared to the placebo group was compensated on week 12 post-treatment. Intra-group analysis in the treatment group showed that the serum levels of Fe, Ca, Mg, P, Zn, and Na was significantly increased at week 12 post-treatment compared to baseline levels. Whereas, intra-group analysis in the control group showed only Ca has a significant difference between baseline and week 12 post-treatment. CONCLUSION: The serum levels of Fe, Zn, P, Mg, Ca, and Na are increased significantly 12 weeks after oral administration of Lactocare® in psoriatic patients. The serum level of Fe and Cu is affected by sex at pre- and post-treatment. This study supports the concept that Lactocare® exerts beneficial effects in the gastrointestinal tract to improve mineral absorption in psoriatic patients.


Subject(s)
COVID-19 , Psoriasis , Synbiotics , Trace Elements , Electrolytes , Humans , Psoriasis/drug therapy , Sodium , Trace Elements/analysis
7.
Huan Jing Ke Xue ; 42(8): 3644-3651, 2021 Aug 08.
Article in Chinese | MEDLINE | ID: covidwho-1328299

ABSTRACT

To study the evolution and sources of heavy metal elements in the urban atmosphere before, during (overlapped with Chinese Lunar New Year), and after China's COVID-19 shutdown, a multi-metal online analyzer was deployed to determine the trace elements in PM2.5 in Shanghai from January 1 to February 26, 2020. Meanwhile, source apportionment of the hourly measured heavy metal concentrations was performed using a PMF model, in which eight sources were identified. The results show that the concentrations of most elements presented a "V-shaped" trend, which was mainly influenced by emissions from fireworks (K, Cu, Ba as indicative elements), Se-related industry, road dust (Ca, Fe, Ba), and motor vehicles (Mn, Zn, Fe, Cu). However, during the COVID-19 shutdown period, the concentrations of K, Ba, and Cu were high. Case-specific analysis suggested that prior to the shutdown period, the high concentrations of Cu were significantly influenced by long-range transport, which shifted to a dominant contribution from local fireworks during the shutdown period.


Subject(s)
Air Pollutants , COVID-19 , Metals, Heavy , Trace Elements , Air Pollutants/analysis , China , Dust/analysis , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2 , Trace Elements/analysis
8.
Med Hypotheses ; 144: 110058, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-622199

ABSTRACT

In December 2019, severe cases of pneumonia of unknown aetiology were reported in Wuhan city, in China. Lately, the pneumonia was related to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and the diseases was termed coronavirus disease-2019 (COVID-19). At the end of January 2020, the infection spread all over Italy, but with high infection rates and mortality in the northern part, especially in Lombardy, the most industrialized and polluted region of the country. It is noteworthy that a strong association between severe viral respiratory disease and air pollution has been described. Air pollutant could be solid particles, liquid droplets, or gases and can be of natural origin (such as ash from a volcanic eruption) or released from motor vehicle depletes (carbon monoxide gas) or factories (sulfur dioxide). Volcanic eruptions release large amounts of sulphuric acid, hydrogen sulfide, and hydrochloric acid into the atmosphere. Pulmunary diseases spreadby means of small droplets in thebreath, also called aerosols, and air pollution may facilitate the outside survival of viruses. We suppose that ash and gases emitted from the Mount Etna contributed to air pollution, potentially favouring the major contagion of COVID-19 in the eastern flank of the mountain, as in Catania city. In fact, ash and gases (with regard to radon) are usually particularly intense in winter, with a reduction of emission of specific metals with warmer weather. This is the first paper that elaborates the hypothesis of a potential role of volcanic gases and heavy metals-related air pollution, combined to specific climatic conditions and regional topography, in favouring severe COVID-19 diffusion in Sicily. Clinical and epidemiological studies are needed to support the hypothesis and plan the due prevention and awareness-raising campaigns.


Subject(s)
Air Pollutants , Air Pollution/adverse effects , COVID-19/transmission , Trace Elements/analysis , Volcanic Eruptions , COVID-19/epidemiology , Cities , Gases , Humans , Hydrochloric Acid , Hydrogen Sulfide , Italy/epidemiology , Metals, Heavy , Models, Theoretical , Sicily/epidemiology , Soil , Sulfuric Acids , Water
SELECTION OF CITATIONS
SEARCH DETAIL